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ABSTRACT

Let H be a Hopf algebra over a base field. If H has an N-filtration such that

the associated graded ring is connected graded noetherian and has enough

normal elements, then H is Gorenstein. This gives a partial solution

to a question of Brown and Brown–Goodearl. As a consequence, every

quotient Hopf algebra of a generic quantized coordinate ring of a connected

semisimple Lie group is Auslander–Gorenstein and Cohen–Macaulay. The

last statement answers a question of Goodearl–Zhang.
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0. Introduction

In 1969, Larson–Sweedler [LS] proved that every finite dimensional Hopf alge-

bra over a base field k is Frobenius; consequently, it has injective dimension

zero. This result is extremely useful and fundamental in the study of finite di-

mensional Hopf algebras. It is natural to ask if a version of Larson–Sweedler’s

result holds for infinite dimensional noetherian Hopf algebras. In 1997, Brown–

Goodearl [BG1, Subsection 1.15] and Brown [Br, Subsection 3.1] asked

Question 0.1: If H is a noetherian Hopf algebra, does H have finite injective

dimension (or equivalently, is H Gorenstein)?

Since the results obtained in [BG1, Br], several partial solutions have been

found. For example, Wu–Zhang answered this question affirmatively when H

is PI [WZ2, Theorem 0.1] and when H is N-graded with balanced dualizing

complex [WZ3, Theorem 1]; Goodearl–Zhang solved this question for another

class of Hopf algebras in [GZ, Theorem 0.2]. The dualizing complex was first

used for this question in [WZ1, Corollary 0.4], where the question was answered

for noetherian Hopf algebras that are finite over their centers. A few years ago

Yekutieli suggested that the rigid dualizing complex should be useful for solving

this question generally. One of our main results is to generalize some of these

known partial results using rigid dualizing complexes (see Theorems 0.4 and

2.3).

Recent research in ring theory and noncommutative algebraic geometry sug-

gests that we need a better understanding of certain homological properties for

several classes of algebras, including quantum groups. For example, Goodearl

and Zhang asked the following question [GZ, Question 0.3].

Question 0.2: Let G be a connected semisimple Lie group over C, and I a Hopf

ideal of the standard generic quantized coordinate ring Oq(G). Is the Hopf

algebra Oq(G)/I Auslander–Gorenstein and Cohen–Macaulay?

The definitions of the Auslander–Gorenstein property and the Cohen–Macau-

lay property will be reviewed in Section 1. Many quantized algebras (including

Oq(G) in the above question) have a good filtration which helps to build up

rigid dualizing complexes.

Hypothesis 0.3: We say an algebra A satisfies filtration hypothesis if A has

an exhaustive ascending N-filtration such that the associated graded ring grA
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is connected graded noetherian with enough normal elements, which means

that every non-simple graded prime factor ring of grA contains a homogeneous

normal element of positive degree.

We use rigid dualizing complexes to prove the following results.

Theorem 0.4 (Corollary 2.6): Let H be a noetherian Hopf algebra. Suppose

H satisfies the filtration hypothesis. Then H is Gorenstein, and the following

hold.

(a) H is Artin–Schelter Gorenstein;

(b) the rigid dualizing complex over H is R = νH1[n] where n = injdim H =

GKdimH and ν is some algebra automorphism of H ;

(c) H is Auslander–Gorenstein and Cohen–Macaulay;

(d) GKdimH/p = GKdimH for every minimal prime ideal p ⊂ H ;

(e) H has a quasi-Frobenius artinian ring of fractions;

(f) the antipode of H is bijective;

(g) if H has finite global dimension, then H is semiprime.

Theorem 0.5: Let G be a connected semisimple Lie group over C, and I a Hopf

ideal of the standard generic quantized coordinate ring Oq(G). Then Oq(G)/I

is Auslander–Gorenstein and Cohen–Macaulay. Further, assertions (a), (b), (d),

(e), (f) in Theorem 0.4 hold for H := Oq(G)/I.

Theorem 0.5 answers Question 0.2 affirmatively. Theorem 0.4 generalizes the

first part of [GZ, Theorem 0.2] and answers Question 0.1 for a special case. The

filtration hypothesis is mild since many quantum groups and quantum algebras

(see for example [GL]) satisfy this hypothesis. Following ideas in the proof

of [BG2, Theorem 2.6] one can show that if the R-matrix flips a full flag of

subspaces of the generating vector space, then the quantum symmetric algebra

(and then the corresponding quantum group in most cases) obtained by the

FRT-construction satisfies the filtration hypothesis (see [BG2] for details).

The proof of Theorem 0.4 (and Theorem 0.5) is fairly easy and uses only basic

properties of rigid dualizing complexes developed by Van den Bergh [VdB] and

Yekutieli–Zhang [YZ1]-[YZ4]. Our contribution is to find a formula which serves

as a bridge between properties of the rigid dualizing complex and the Gorenstein

property of a Hopf algebra (Theorems 2.3(c) and 2.4(b)). This formula states
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that, under certain conditions such as the filtration hypothesis, the isomorphism

RHomAe(A, A ⊗ Rop) ∼= A

holds for the rigid dualizing complex R over A (Lemma 1.8). This paper pro-

vides a surprising application of the rigid dualizing complex to the study of

noetherian Hopf algebras. Our method is not complicated, it could be modified

to cover a larger class of Hopf algebras.

Using similar ideas some other results are proved for (semi)prime noether-

ian Hopf algebras. The following is analogous to [YZ5, Theorem 0.2]. The

terminology used next is defined in Section 3.

Theorem 0.6 (Theorem 3.2): Let H be a prime noetherian Artin–Schelter

regular Hopf algebra of global dimension d. Let Q be the simple artinian Goldie

quotient ring of H . Then Q is rigid and smooth of homological transcendence

degree d (in the sense of [YZ5]).

Theorem 0.6 generalizes some results of Stafford [St] and Yekutieli–Zhang

[YZ5]. A partial converse of Theorem 0.6 is stated in Proposition 3.6.

1. Homological algebra preparations

Throughout, let k be a commutative base field. All vector spaces are over k;

in particular, an algebra or a ring means a k-algebra, and the unmarked tensor

product ⊗ means ⊗k. In a small part of the paper we are working with the

quantized coordinate ring Oq(G) and its factor Hopf algebras, in which case we

need to assume that k is the field of complex numbers C as in [GZ].

Usually we work with left modules. The category of left A-modules is denoted

by A-Mod and the category of right A-modules is denoted by Mod -A. Let Aop

denote the opposite ring of A. A right A-module can be viewed as a left Aop-

module. Let Ae denote the ring A⊗Aop. An A-bimodule is sometimes identified

with a left Ae-module.

We refer to Montgomery’s book [Mo] for basic definitions related to Hopf

algebras. Let H be a Hopf algebra over k. Usually k denotes the trivial H-

bimodule H/ ker ε, where ε : H → k is the counit of H . We refer to Krause–

Lenagan’s book [KL] for the basics about Gelfand–Kirillov dimension.

In this section, we recall several definitions related to homological properties

and rigid dualizing complexes of noncommutative noetherian rings.
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Definition 1.1: A noetherian algebra A is called Gorenstein if it has finite

injective dimension on both sides.

Definition 1.2: A Hopf algebra H is called Artin–Schelter Gorenstein (or

AS–Gorenstein) if

(AS1) injdim HH = d < ∞;

(AS2) dimk Extd
H(Hk, HH) = 1, ExtiH(Hk, HH) = 0 for all i 6= d;

(AS3) the right H-module versions of the conditions (AS1,AS2) hold.

We say H is Artin–Schelter regular (or AS-regular) if it is AS–Gorenstein

and it has finite global dimension.

To define the Auslander–Gorenstein and Cohen–Macaulay conditions we need

more invariants of modules.

Definition 1.3: Let A be a noetherian Gorenstein algebra.

(1) Let M be a finitely generated left (or right) A-module, the grade or

the j-number of M with respect to A is defined to be

j(M) := inf{n : Extn
A(M, A) 6= 0}.

(2) The ring A is called Auslander–Gorenstein if it satisfies the Aus-

lander condition:

For every finitely generated left (respectively, right) A-module M

and every nonnegative integer q, one has j(N) ≥ q for every finitely

generated right (respectively, left) A-submodule N ⊆ ExtqA(M, A).

(3) The ring A is called Auslander regular if it is Auslander–Gorenstein

and it has finite global dimension.

(4) Suppose A has finite Gelfand–Kirillov dimension (denoted by GKdim).

We say that A is Cohen–Macaulay ( with respect to GKdim) if

j(M) + GKdimM = GKdimA

for every nonzero finitely generated left or right A-module M .

The concepts in Definition 1.3 (1,2,4) can also be defined for (rigid) dua-

lizing complexes, which will be reviewed next. Let D(A- Mod) denote the de-

rived category of left A-modules. Let D
+(A- Mod) (respectively, D

−(A- Mod),

D
b(A- Mod)) denote the bounded below (respectively, bounded above, bounded)

derived category of left A-modules. Let X be a nonzero bounded complex in
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D
b(A- Mod). The injective dimension of X is defined to be

(E1.3.1) injdim X = sup{i : Exti
A(M, X) 6= 0, for some M ∈ A- Mod}.

If A is noetherian, then we need only use finitely generated A-modules M in

(E1.3.1). Let I be a minimal injective resolution of X . Then injdimX =

max{i : Ii 6= 0}. The projective dimension of X is defined to be

(E1.3.2) projdimX = sup{i : Exti
A(X, M) 6= 0, for some M ∈ A-Mod}.

If A is noetherian and X is a compact object in D(A- Mod), then X has fi-

nite projective dimension and projdimX = max{i : ExtiA(X, A) 6= 0}. The

following definition is due to Yekutieli [Ye].

Definition 1.4: Let A be a noetherian algebra. A complex R ∈ D
b(Ae-Mod) is

called a dualizing complex over A if it satisfies the following conditions:

(a) R has finite injective dimension over A and over Aop, respectively;

(b) for every i, HiR is finitely generated over A and over Aop, respectively;

(c) the canonical morphisms A → RHomA(R, R) and A → RHomAop(R, R)

are isomorphisms in D(Ae-Mod).

For any complex X and any integer n, the nth complex shift is denoted by

X [n]. If A is noetherian and Gorenstein, then any complex shift A[n] of the A-

bimodule A is a dualizing complex over A. Let X be a complex of A-bimodules.

We use AX and XA to denote the same complex with the induced left and right

A-module structure respectively.

Let R be a complex of Ae-modules (or a complex of A-bimodules). Let Rop

denote the “opposite complex” of R which is defined as follows: as a complex

of k-modules Rop = R, and the left and right Aop-module actions on Rop are

given by

a · r := ra and r · b := br,

respectively, for all a, b ∈ Aop(= A) and r ∈ Rop(= R). If R ∈ D(Ae-Mod), then

Rop ∈ D
b((Aop)e-Mod). The flip map

φ : (Ae)op = (Aop)e = Aop ⊗ A −→ A ⊗ Aop = Ae

is an algebra isomorphism. Hence there is a natural isomorphism D
b(Ae-Mod) ∼=

D
b((Aop)e-Mod). It is obvious that R is a dualizing complex over A if and only

if Rop is a dualizing complex over Aop. The following definition is due to Van

den Bergh [VdB].
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Definition 1.5: Let A be a noetherian algebra. A dualizing complex R over A

is called rigid if there is an isomorphism

R ∼= RHomAe(A, R ⊗ Rop)

in D(Mod -Ae). Here the left Ae-module structure of R ⊗ Rop comes from the

left A-module structure of R and the left Aop-module structure of Rop.

Let R be a dualizing complex over A (not necessarily rigid), and let M be a

finitely generated left (or right) A-module. The grade of M with respect to

R is defined to be

jR(M) := inf{n : Extn
A(M, R) 6= 0}.

We say that R is Auslander if:

For every finitely generated left (respectively, right) A-module M ,

every integer q, and every finitely generated right (respectively, left)

A-submodule N ⊆ ExtqA(M, R), one has jR(N) ≥ q.

We say that R is Cohen–Macaulay if

jR(M) + GKdimM = 0

for all nonzero finitely generated left and right A-modules M .

Let M be an A-bimodule and let ν, τ be algebra automorphisms of A. The

twisted bimodule νM τ is an A-bimodule defined by

a · m · b = ν(a)mτ(b)

for all a, b ∈ A and all m ∈ νM τ (= M). If τ is the identity map of A, νM τ is

written as νM1.

The connection between the Auslander and Cohen–Macaulay properties just

defined and the ones defined in Definition 1.3 are the following, which is well-

known. See [YZ2, Proposition 3.4] for similar statements.

Lemma 1.6: Let A be a noetherian algebra. Let n be any integer and ν be any

algebra automorphism of A.

(a) The ring A is Gorenstein if and only if νA1[n] is a dualizing complex.

(b) Suppose A is Gorenstein. Then the ring A is Auslander–Gorenstein if

and only if the dualizing complex νA1[n] is Auslander.



96 D.-M. LU, Q.-S. WU AND J. J. ZHANG Isr. J. Math.

(c) Suppose A is Gorenstein with GKdimA = d < ∞. Then the ring A is

Cohen–Macaulay if and only if the dualizing complex νA1[d] is Cohen–

Macaulay.

In some cases, the rigid dualizing complex will have the form of R = νA1[n]

for some algebra automorphism ν of A (see, for example, Theorem 2.4(a)).

Lemma 1.7: Suppose A satisfies filtration hypothesis 0.3. Then

(a) there is a rigid dualizing complex R over A;

(b) R is Auslander and Cohen–Macaulay;

(c) Ae := A ⊗ Aop is noetherian;

(d) R ⊗ Rop is a (rigid) dualizing complex over Ae.

Proof. (a), (b) [YZ1, Corollary 6.9(iii)].

(c) It follows from [ArSZ, Propositions 4.3, 4.9 and 4.10] that A ⊗ B is noe-

therian for any noetherian algebra B. Hence A ⊗ Aop is noetherian.

(d) Suppose A and B are two algebras satisfying filtration hypothesis 0.3.

Let RA and RB be the rigid dualizing complexes over A and B, respectively.

[YZ4, Theorem 8.5] implies that RA ⊗ RB is the rigid dualizing complex over

A ⊗ B. The hypotheses in [YZ4, Theorem 8.5] are slightly different from ours,

but the proof of [YZ4, Theorem 8.5] works under filtration hypothesis 0.3. The

assertion follows by taking B = Aop.

Lemma 1.8: Let A be an algebra. Suppose that

(i) Ae is noetherian,

(ii) R is the rigid dualizing complex over A, and

(iii) R ⊗ Rop has finite injective dimension on both sides.

Then

(a) R ⊗ Rop is a dualizing complex over Ae, and

(b) RHomAe(A, A ⊗ Rop) ∼= A in D(Mod -Ae).

Proof. (a) Definition 1.4(a) is (iii) and Definition 1.4(b,c) follows from a direct

computation using the Künneth formula (see Lemma 1.9 below) and the fact

that R (respectively, Rop) is a dualizing complex over A (respectively, over Aop).



Vol. 169, 2009 HOPF ALGEBRAS WITH RIGID DUALIZING COMPLEXES 97

(b) Since R ⊗ Rop is a dualizing complex over Ae, we have

RHomAe(A, A ⊗ Rop)

∼= RHom(Ae)op(RHomAe(A ⊗ Rop, R ⊗ Rop), RHomAe(A, R ⊗ Rop))

∼= RHom(Ae)op(R ⊗ A, RHomAe(A, R ⊗ Rop))

∼= RHom(Ae)op(R ⊗ A, R)

where the second last isomorphism follows from the isomorphism

RHomAop(Rop, Rop) ∼= AopAop ∼= AA,

and the last isomorphism follows from the rigidity isomorphism of R given in

Definition 1.5. By the Hom and ⊗ adjunction,

RHom(Ae)op(R ⊗ A, R) ∼= RHomAop(R, RHomA(A, R))

∼= RHomAop(R, R) ∼= A.

The following special case of the Künneth formula is of course well-known.

Lemma 1.9: Let X and Y be two complexes of k-vector spaces.

(a) For every n, Hn(X ⊗ Y ) =
⊕

i∈Z
Hi(X) ⊗ Hn−i(Y ).

(b) If Hi(X⊗Y ) = 0 for all i 6= 0, then there is an n such that X ∼= M [n] and

Y ∼= N [−n] for some k-vector spaces M and N , and H0(X⊗Y ) ∼= M⊗N .

2. Gorenstein property of Hopf algebras

Throughout this section let H be a noetherian Hopf algebra. We need to recall

the left adjoint action

L : He- Mod −→ H-Mod

which is defined in [Mo, Definition 3.4.1(1)] (and is also reviewed in [BZ, 2.2]).

Let M be an H-bimodule (or equivalently a left H ⊗Hop-module). Then L(M)

is a left H-module where the left H-action is defined by

h · m =
∑

h1mS(h2)

for all h ∈ H and all m ∈ M . If f : M → N is an H-bimodule homomorphism,

then L(f) : L(M) → L(N) is a left H-module homomorphism, which is the

same as f when we consider L(M) = M and L(N) = N as k-vector spaces.

Hence L is in fact a functor. We list some easy facts.



98 D.-M. LU, Q.-S. WU AND J. J. ZHANG Isr. J. Math.

Lemma 2.1 ([BZ, Lemmas 2.1 and 2.2]): Let A be any algebra. Let L be the

left adjoint functor of H defined as above.

(a) L is an exact functor.

(b) L preserves projectives and injectives respectively.

(c) Let N be an Hop⊗Aop-module. Then L(H⊗N) with induced Aop-action

obtained from N is isomorphic to HH ⊗ kNA as H ⊗Aop-modules. The

isomorphism from L(H ⊗ N) to HH ⊗ kNA is given by

h ⊗ n 7→
∑

h1 ⊗ nS2(h2),

where ∆(h) =
∑

h1 ⊗ h2, with inverse h′ ⊗ n′ 7→
∑

h′
1 ⊗ n′S(h′

2). As a

consequence, L(H ⊗ N) is a free left H-module.

Proof. See [BZ, Lemma 2.2] for (a), (b). Part (c) is similar to [BZ, Lemma

2.1(b)] and [BZ, Lemma 2.2(c)].

Since L is exact and preserves the injectives, we can extend L to a functor

L : D
+(He- Mod) → D

+(H-Mod)

without taking the right derived functor. In other words, the right derived

functor of L is L itself induced from the level of chain complexes.

Lemma 2.2: Let k be the trivial H-module.

(a) Let X be a bounded below complex of H-bimodules. Then there is a

natural isomorphism

ExtiHe(H, X) ∼= ExtiH(k, L(X))

for all i. This isomorphism preserves any extra module structure from

X .

(b) Let Y be a bounded complex of Hop ⊗ Aop-modules. Then there is a

natural isomorphism of Aop-modules

Exti
He(H, H ⊗ Y ) ∼= Hi(RHomH(k, HH) ⊗ Y ) ∼=

⊕

n∈Z

Exti−n
H (k, H) ⊗ Hn(Y )

for all i.

Proof. (a) If X is just an H-bimodule, the assertion is [BZ, Lemma 2.4(b)].

The proof of [BZ, Lemma 2.4(b)] works for a general X .
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(b) By part (a), we have ExtiHe(H, H ⊗Y ) ∼= ExtiH(k, L(H⊗Y )). By Lemma

2.1(c), HL(H ⊗ Y )A
∼= HH ⊗ kYA. Hence

Exti
H(k, L(H ⊗ Y )) ∼= Exti

H(k, HH ⊗ Y ) = Hi(RHomH(k, HH ⊗ Y ))

∼= Hi(RHomH(k, HH) ⊗ Y )

∼=
⊕

n∈Z

Exti−n
H (k, H) ⊗ Hn(Y )

where the last isomorphism follows from the Künneth formula (Lemma 1.9(a))

and the second last isomorphism holds since H is noetherian and k is finitely

generated over H . The assertion follows by combining these isomorphisms.

We are now ready to prove one of our main results.

Theorem 2.3: Let H be a noetherian Hopf algebra. Suppose

(i) there is a dualizing complex R over H such that

(E2.3.1) RHomHe(H, H ⊗ Rop) ∼= H

in D(Mod -He),

(ii) either H has an anti-automorphism or condition (i) hold for Hop.

Then the following statements hold.

(a) There is an n such that Extn
H(k, H) = k and ExtiH(k, H) = 0 for all

i 6= n.

(b) R has the form of νH1[n] where ν is an algebra automorphism of H .

(c) H is Gorenstein.

(d) If injdim R = 0, then H is AS-Gorenstein and injdim H = n.

Note that if the Hopf algebra H satisfies condition (i), (ii), (iii) in Lemma

1.8, then (E2.3.1) holds for the rigid dualizing complex over H .

Proof of Theorem 2.3. (a), (b), (c) First we only assume hypothesis (i). By

(E2.3.1)

ExtiHe(H, H ⊗ Rop) ∼=







H i = 0,

0 i 6= 0.

By Lemma 2.2(b),

H0(RHomH(k, H) ⊗ Rop) ∼= Ext0He(H, H ⊗ Rop) ∼= H



100 D.-M. LU, Q.-S. WU AND J. J. ZHANG Isr. J. Math.

as left H-modules and

Hi(RHomH(k, H) ⊗ Rop) ∼= Exti
He(H, H ⊗ Rop) = 0

for all i 6= 0. By the Künneth formula [Lemma 1.9(b)], there is an n such that

Extn
H(k, H) = V 6= 0 and ExtiH(k, H) = 0 for all i and Rop = M [n] for an

H-bimodule M such that V ⊗ M ∼= H as left H-module. This implies that

w := dimk V is finite and H ∼= M⊕w. Since HRop(= HR) has finite injective

dimension, so has M . Hence HH has finite injective dimension.

Now we use hypothesis (ii). If H has an anti-automorphism, HH has finite

injective dimension. If hypothesis (i) holds for Hop (or for the Hopf algebra

(H, mop, ∆op, S, ε)), the above argument shows that HH has finite injective di-

mension.

Under the hypothesis (ii), we also see that

ExtiHop(k, H) ∼=







W i = n,

0 i 6= 0

for some finite dimensional vector space W . By the proof of [BZ, Lemma 3.2],

V and W are 1-dimensional over k. Note that the proof of [BZ, Lemma 3.2]

works here even if n is not the injective dimension of H , and in this case H is

not AS-Gorenstein. Therefore (a) follows.

Since V is 1-dimensional, M ∼= H as a left H-module. This means that the

dualizing complex R is isomorphic to H [n] when restricted to the left-hand side.

Since H is Gorenstein, R is a two-sided tilting complex over (H, H) by [YZ2,

Lemma 5.2(2)]. The two-sided tilting complex R is invertible [YZ2, Definition

2.1] with inverse R∨ ∼= RHomH(R, H). Since HR ∼= HH [n], R∨ ∼= M∨[−n]

for some H-bimodule M∨. The invertibility of R implies that M is invertible

with an inverse M∨. Since HM ∼= HH , the Morita theory implies that MH
∼=

HH . Therefore there is an algebra automorphism ν such that M ∼= νH1 as

H-bimodules. Part (b) follows, and so is part (c).

(d) By part (b),

injdim H = injdim H [n] + n = injdim R + n < ∞,

where n is defined in parts (a), (b). If injdimR = 0, then injdim H = n.

Combining with part (a), (d) follows.

Every noetherian AS-Gorenstein Hopf algebra has a rigid dualizing complex.
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Theorem 2.4: Let H be a noetherian AS-Gorenstein Hopf algebra with bijec-

tive antipode. Let d be the injective dimension of H .

(a) [BZ, Theorem 0.2] The rigid dualizing complex R over H is isomorphic

to νH1[d] where ν is an algebra automorphism of H .

(b) The isomorphism (E2.3.1) holds for the R in part (a).

Proof. (b) Since R ∼= νH1[d], R is an invertible H-bimodule complex and the

inverse R−1 is 1Hν [−d]. Hence

RHomHe(H, H ⊗ Rop) ∼= RHomHe(H, (R ⊗ Rop) ⊗He (R−1 ⊗ Hop))

∼= RHomHe(H, (R ⊗ Rop)) ⊗He (R−1 ⊗ Hop)

∼= R ⊗He (R−1 ⊗ Hop) ∼= H ⊗H R ⊗H R−1

∼= H.

The algebra automorphism ν in the above theorem is called the Nakayama

automorphism of H which is described in [BZ, Theorem 0.3] as follows:

ν = S2ξ,

where S is the antipode of H and ξ is the left winding automorphism of H

associated to the left homological integral of H . We do not need this formula

in this paper.

The following lemma is well-known.

Lemma 2.5: Let A be a Hopf algebra (or any algebra with a nonzero finite

dimensional A-module) and let R be a dualizing complex over A. If R is Aus-

lander and Cohen–Macaulay, then injdim R = 0 and GKdimA = −jR(A) =

−min{i : Hi(R) 6= 0}.

Proof. Since jR(M) = −GKdimM ≤ 0 for every nonzero A-submodule M ⊂

Exti
Aop(N, R), the Auslander condition implies that Exti

Aop(N, R) = 0 for all

i > 0 and for all finitely generated Aop-modules N . Thus injdim RA ≤ 0. By

symmetry, injdim AR ≤ 0. Since A has a 1-dimensional module k, jR(k) =

−GKdim k = 0, injdim AR ≥ 0. Therefore, injdim AR = injdim RA = 0. The

last formula follows from the definition of Cohen–Macaulay property of R.

Now we are ready to prove Theorem 0.4.

Corollary 2.6: Suppose that H is a Hopf algebra satisfying filtration Hy-

pothesis 0.3. Then the following hold.
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(a) H is Gorenstein and AS-Gorenstein.

(b) The rigid dualizing complex R over H is isomorphic to νH1[n] where

n = injdim H = GKdimH .

(c) H is Auslander–Gorenstein and Cohen–Macaulay.

(d) GKdimH/p = GKdimH for every minimal prime ideal p ⊂ H .

(e) H has a quasi-Frobenius artinian ring of fractions.

(f) The antipode of H is bijective.

(g) If H has finite global dimension, then H is semiprime.

Proof. By Lemmas 1.7 and 1.8, the rigid dualizing complex R over H exists

and (E2.3.1) holds for R. Hence we have verified hypothesis (i) in Theorem 2.3.

Hypothesis 0.3 is left-right symmetric. Therefore hypothesis (ii) in Theorem

2.3 also holds.

(a) By Lemma 1.7(a,b), the rigid dualizing complex R over H is Auslander

and Cohen–Macaulay. By Lemma 2.5, injdim R = 0. By Theorem 2.3(c,d), H

is Gorenstein and AS-Gorenstein.

(b) By Theorem 2.3(b,d), R is isomorphic to νH1[n] where n = injdimH . By

Lemma 2.5,

GKdimH = −min{i : Hi(R) 6= 0} = −(−n) = n.

(c) By Lemma 1.7(b), R is Auslander and Cohen–Macaulay. The assertion

follows from Lemma 1.6(b), (c) and part (b).

(d,e) Follow from part (c) and [AjSZ, Theorem 6.1]. The hypothesis (*) in

[AjSZ, Theorem 6.1] holds trivially since H is Cohen–Macaulay with respective

to GK-dimension.

(f) This follows from [Sk, Theorem A(ii)] and part (e).

(g) Follows from part (c) and [AjSZ, Corollary 6.3].

Theorem 0.5 is an immediate consequence.

Proof of Theorem 0.5. By [GZ, Theorem 2.6], Oq(G) satisfies filtration Hypoth-

esis 0.3. Hence any quotient Oq(G)/I satisfies filtration Hypothesis 0.3. The

assertions follow from Corollary 2.6.

3. Goldie quotient rings of (semi)prime Hopf algebras

Semisimple artinian Hopf algebras have been studied by many authors. Proper-

ties of general infinite dimensional Hopf algebras are less known. In this section
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we study some general ring-theoretic properties of semiprime noetherian Hopf

algebras with finite global dimension. Note that, by [Sk, Corollary 1], every

semiprime noetherian Hopf algebra has a bijective antipode. The results in this

section are not related to the ones in the last section though some ideas in the

proofs are similar. First we recall a result about noetherian PI Hopf algebras.

Theorem 3.1: Let H be a noetherian affine PI Hopf algebra of GKdim d.

Then the following hold

(a) H is AS-Gorenstein, Auslander Gorenstein and Cohen–Macaulay of in-

jective dimension d.

(b) If gldimH < ∞, then H is a direct sum of prime rings of the same

GKdim and the center of H is a direct sum of Krull domains of the

same GKdim, and H is finite over its center and each prime direct

summand is equal to its trace ring.

(c) Suppose gldimH < ∞. Let Q(H) be the Goldie quotient ring of H .

Then Q(H) is a direct sum of simple artinian algebras of the same

transcendence degree.

Proof. (a) This is [WZ2, Theorems 0.1 and 0.2].

(b) Follows from [SZ, Theorems 5.4 and 5.6].

(c) Clear from part (b).

As we have seen from Corollary 2.6, a version of Theorem 3.1(a), (b) should

hold for non-PI noetherian Hopf algebras. In this section we will prove a version

of Theorem 3.1(c) for certain Hopf algebras. The classical transcendence degree

is not defined for non-PI division algebras, but there is a replacement. Let D be

a simple artinian algebra (over k). The homological transcendence degree

of D [YZ5, Definition 1.1(a)] is defined to be

HtrD = injdimDe D.

We refer to [YZ5] for the basic properties of Htr. A simple artinian algebra D

is called rigid [YZ5, Definition 2.2, p. 115] if

ExtiDe(D, De) =







νD1 i = Htr D,

0 i 6= Htr D,
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where ν is an algebra automorphism of D. A simple artinian algebra D is

called smooth if gldimDe < ∞ (or equivalently projdimDe D < ∞) (see [YZ5,

Definition 1.1(f) and Lemma 1.3(c)]).

Theorem 3.2: Let H be a semiprime noetherian AS-regular Hopf algebra of

global dimension d. Let Q(H) be the Goldie quotient ring of H . Then Q(H) is a

direct sum of rigid and smooth simple artinian algebra of the same homological

transcendence degree d.

Proof. Since Q(H) is semisimple artinian, it has an algebra decomposition into

simple artinian rings

(E3.2.1) Q(H) =
⊕

j

Dj .

Since H has finite global dimension, projdimH k < ∞ and projdimHop k < ∞.

By the Künneth formula,

projdim(H⊗Hop) k ≤ projdimH k + projdimHop k < ∞.

Hence the Hopf algebra H ⊗ Hop has finite global dimension by [LL, Corollary

2.4]. Therefore its localization Q(H) ⊗ Q(Hop) has finite global dimension.

Since Dj ⊗ Dop

j is a direct summand of Q(H) ⊗ Q(Hop), Dj ⊗ Dop

j has finite

global dimension. This implies that Dj is smooth for every j.

Since H is AS-regular, Theorem 2.4(a) says that H has a rigid dualizing

complex of the form νH1[d] where d = injdim H = gldimH . By [BZ, Lemma

5.2(c)], H is a compact object in D(He-Mod). Then

RHomHe(H, R ⊗ Rop) ⊗He (Q(H) ⊗ Q(Hop))

∼= RHomHe(H, (R ⊗ Rop) ⊗He (Q(H) ⊗ Q(Hop)))

∼= RHomHe(H, νQ(H)1 ⊗ µQ(Hop)1[2d])

∼= RHomQ(H)e(Q(H), νQ(H)1 ⊗ µQ(Hop)1[2d])

for some automorphism ν and µ of Q(H) and Q(Hop) respectively, where the

first isomorphism follows from [YZ3, Lemma 3.7(1)], the second one follows

from the fact R = νH1[d], and the third one follows from [YZ3, Lemma 3.7(2)].
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By the rigidity of the dualizing complex R,

RHomHe(H, R ⊗ Rop) ⊗He (Q(H) ⊗ Q(Hop))

∼= R ⊗He (Q(H) ⊗ Q(Hop))

∼= νH1[d] ⊗He (Q(H) ⊗ Q(Hop))

∼= νQ(H)1[d].

Combining these two isomorphisms and after twisting by some automorphisms,

we obtain that

RHomQ(H)e(Q(H), Q(H) ⊗ Q(Hop)) ∼= τQ(H)1[−d]

for some automorphism τ of Q(H). Using the decomposition of Q(H)⊗Q(Hop)

induced by (E3.2.1), we have

(E3.2.2) RHomDe

j
(Dj , Dj ⊗ Dop

j ) ∼= τjD1
j [−d]

for all j. Since Dj is smooth, projdimDe

j
Dj < ∞. Recall that H is a compact

object in the derived category D(He-Mod). This implies that Q(H) is a compact

object in D(Q(H)e-Mod). Hence Dj is a compact object in D((Dj)
e-Mod). Then

projdimDe

j
Dj = min{i : Exti

De

j
(Dj , D

e

j) 6= 0} = d.

By [YZ5, Lemma 1.3(b)], gldimDe

j = projdimDe

j
Dj = d. Clearly,

(E3.2.3) injdimDe

j ≤ gldimDe

j = d

and

(E3.2.4) injdim De

j ≥ min{i : ExtiDe

j
(Dj , D

e

j) 6= 0} = d.

Combining (E3.2.2), (E3.2.3) and (E3.2.4), we see that Dj is smooth, rigid of

homological transcendence degree d for every j.

We have an immediate consequence.

Corollary 3.3: (a) Suppose char k = p ≥ 0. Let G be a polycyclic-by-

finite group containing no elements of order p. Let Q(kG) =
⊕

j Dj

where each Dj is a simple artinian algebra. Then Dj is smooth and

rigid and Htr Dj = d for all j, where d is the Hirsch length of G.

(b) Let g be a finite dimensional Lie algebra. Then Q(U(g)) is smooth and

rigid of Htr = dim g.
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(c) Let Oq(G) be the standard generic quantized coordinate ring of a con-

nected semisimple Lie group G (see [BZ, Section 6.5] for details). Then

Q(Oq(G)) is smooth and rigid of Htr = dimG.

(d) Let Uq(g) be the quantized enveloping algebra of the semisimple Lie

algebra g (see [BZ, Section 6.4] for details). Then Q(Uq(g)) is smooth

and rigid of Htr = dim g.

Remark 3.4: Corollary 3.3(a,b) is a slight generalization of a result of Stafford

[St, Proposition 1.7]. Corollary 3.3(b) is also given in [YZ5, Example 1.9(f)].

Corollary 3.3(d) can be viewed as a quantum version of Corollary 3.3(b).

Next we consider a partial converse of Theorem 3.2.

Lemma 3.5: Let H be a noetherian Hopf algebra that is prime as an algebra.

Suppose that the simple artinian ring Q(H) is rigid of Htr = d. Then

ExtiH(k, H) =







k i = d,

0 i 6= d.

Proof. A computation similar to the one in the proof of Theorem 3.2 shows

RHomHe(H, He) ⊗He Q(H)e ∼= RHomQ(H)e(Q(H), Q(H)e).

Since Q(H) is rigid of Htr = d, RHomQ(H)e(Q(H), Q(H)e) ∼= µQ(H)1[−d] for

some automorphism µ of Q(H). Hence

Exti
He(H, He) ⊗He Q(H)e =







µQ(H)1 i = d,

0 i 6= d.

By Lemmas 2.1(c) and 2.2, there are right Hop-module isomorphisms

Exti
He(H, He) ∼= Exti

H(k, L(He)) ∼= Exti
H(k, HH ⊗ Hop)

∼= Exti
H(k, H) ⊗ Hop.

So ExtiHe(H, He) is either zero or a free right Hop-module. A right Hop-module

can be viewed as a left H-module. So any nonzero ExtiHe(H, He) is a free

left H-module. By symmetry, it is a free right H-module when nonzero. If

Exti
He(H, He) is nonzero, then ExtiHe(H, He) ⊗He Q(H)e is nonzero, which im-

plies that i = d. In this case, the rank of the left (and the right) free H-module

Extd
He(H, He) must be one. Finally the assertion that ExtdH(k, H) ∼= k follows

from the isomorphism Extd
He(H, He) ∼= Extd

H(k, H) ⊗ Hop.
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Proposition 3.6: Suppose H is a noetherian prime Hopf algebra of finite

global dimension. If Q(H) is a rigid simple artinian ring, then H is AS-regular.

Proof. By Lemma 3.5

ExtiH(k, H) =







k i = d,

0 i 6= d,

where d = Htr Q(H). Since H has finite global dimension, by [LL, Corollary

2.4]

gldimH = projdimH k = d.

Therefore, H is AS regular.
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